Regional Projections of Net Greenhouse Gas Emissions and Reductions in Californian Agriculture

Johan Six, Steven De Gryze, Richard Howitt, Rosa Catala, and Santhi Wicks

Funded by PIER Kearney Foundation

Source of greenhouse gases in CA

Composition and sources of greenhouse gases by agriculture

Sources: Livestock, manure, anaerobic soils (rice)

Sources: Fossil fuels, biomass burning, soil degradation

Sources: Fertilizer, crop residues, manure

California Energy Commission, 2005

Composition and sinks of greenhouse gases by agriculture

Sources: Livestock, manure,

anaerobić soils (riće)

Aerobic soils, especially forests and Sinks:

grasslands

Sources: Fossil fuels, biomass burning, soil degradation

Sinks: Buildup soil organic matter

and plant biomass

CO₂, 12.5%

N₂O, 50.0%

Sources: Fertilizer, crop residues,

manure

Sinks: No sinks in soils

California Energy Commission, 2005

Practices for GHG mitigation

- Reduced or zero tillage
- Set-asides/conversions to perennial grass
- Winter cover crops
- More hay in crop rotations
- Higher residue (above- & below-ground) yielding crops
- Manure application and organic cropping
- Reducing fertilizer application rate

Practices for GHG mitiagtion

- Reduced or zero tillage
- Set-asides/conversions to perennial grass
- Winter cover crops
- More hay in crop rotations
- Higher residue (above- & below-ground) yielding crops
- Manure application and organic cropping
- Reducing fertilizer application rate

Research question:

Yolo county

What is the potential for GHG mitigation by agriculture by changing practices for common crops and crop rotations in Yolo county, CA

Research question:

Yolo county

What is the potential for GHG mitigation by agriculture by changing practices for common crops and crop rotations in Yolo county, CA

emissions under alternative practices –
emissions under conventional practices

Yolo county

5 main crops (no rice) in typical rotations

DayCent model

USDA 2002 Census

Validation (1): historical yields

Validation (2): current yields

Results: conventional to reduced tillage – change in yield

Results: conventional to reduced tillage – GHG difference

contribution of separate gases:

Results: conventional to winter cover cropping – change in yield

Results: conventional to winter cover cropping – GHG difference

contribution of separate gases:

Results: conventional to organic – change in yield

Results: conventional to organic — GHG difference

total change:

contribution of separate gases:

Results: conventional to low input – change in yield

Results: conventional to low input – GHG difference

total change:

contribution of separate gases:

contribution of CO₂ contribution of N₂O

Conclusions

- Alternative management practices have a limited effect on yield, except for sunflower (but also least validation data)
- Greenhouse gas mitigation potential: reduced tillage < winter cover cropping < organic cropping
- Fertilizer reduction is a real option for grain crops
- Tomatoes seem to have most potential in Yolo
- Need for uncertainty analysis
- Need for assessing economic feasibility
 - -> Richard Howitt

Initialization

DayCent uses conceptual organic matter pools

Historical runs

Cropping calendar for each practice

- (1) conventional practices (CONV)
- (2) reduced tillage (RT)
- (3) use of winter cover crops (WCC)
- (4) organic farming methods (ORG)
 - = manure addition and winter cover crops

	management			
event	CONV	RT	WCC	ORG
herbicide in spring		15 Jan		
field cultivator (tandem disc)	15 Jan	15 Feb		
			2 Apr	2 Apr
moldboard tillage	15 Feb		(incorporates WCC)	(incorporates WCC)
pre-irrigation	8 Apr	8 Apr	8 Apr	8 Apr
manure addition				15 Apr,
				750 kg C ha ⁻¹ , 107 kg N ha ⁻¹
planting day	15 Apr	15 Apr	15 Apr	15 Apr
starter fertilization	13.5 kg N ha ⁻¹	13.5 kg N ha ⁻¹	13.5 kg N ha ⁻¹	
nr. of growing season cultivations	5	5	5	5
nr. of irrigation events	7	7	7	7
fertilization	7 May,	7 May,	7 May,	
	168 kg N ha ⁻¹	168 kg N ha ⁻¹	168 kg N ha ⁻¹	
fertilization	14 May,	14 May,	14 May,	
	6.2 kg N ha ⁻¹	6.2 kg N ha ⁻¹	6.2 kg N ha ⁻¹	
harvest	15 Sep	15 Sep	15 Sep	15 Sep
incorporate biomass			22 Sep	22 Sep
moldboard tillage	30 Sep		29 Sep	
plant legume WCC			4 Nov	4 Nov

Validation (3): soil carbon in 1996

